A Collaborative Filtering Recommendation Algorithm Based on User Clustering and Item Clustering
نویسنده
چکیده
Personalized recommendation systems can help people to find interesting things and they are widely used with the development of electronic commerce. Many recommendation systems employ the collaborative filtering technology, which has been proved to be one of the most successful techniques in recommender systems in recent years. With the gradual increase of customers and products in electronic commerce systems, the time consuming nearest neighbor collaborative filtering search of the target customer in the total customer space resulted in the failure of ensuring the real time requirement of recommender system. At the same time, it suffers from its poor quality when the number of the records in the user database increases. Sparsity of source data set is the major reason causing the poor quality. To solve the problems of scalability and sparsity in the collaborative filtering, this paper proposed a personalized recommendation approach joins the user clustering technology and item clustering technology. Users are clustered based on users’ ratings on items, and each users cluster has a cluster center. Based on the similarity between target user and cluster centers, the nearest neighbors of target user can be found and smooth the prediction where necessary. Then, the proposed approach utilizes the item clustering collaborative filtering to produce the recommendations. The recommendation joining user clustering and item clustering collaborative filtering is more scalable and more accurate than the traditional one.
منابع مشابه
Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملIntelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering
During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملA Recommendation Algorithm Using Hybrid Clustering
Recommendation algorithms apply knowledge discovery techniques to the problem of making product recommendation during a live interaction and achieving widespread success in Ecommerce nowadays. With the magnitudes of users and items grow rapidly, resulting in the extreme sparsity of user rating data and the decreasing of real time performance. To solve the problem, the paper proposed a personali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JSW
دوره 5 شماره
صفحات -
تاریخ انتشار 2010